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Finding Top-k “Unexplained” Activities in
Video

Massimiliano Albanese, Cristian Molinaro, Fabio Persia, Antonio Picariello, V. S. Subrahmanian

Abstract—Most past work on identifying unexpected activities in video has focused on looking for specific patterns of anomalous
activities. In this paper, we consider the situation where we have a known set A of activities (normal and abnormal) that we wish
to monitor. However, in addition, we wish to identify abnormal activities that have not been previously considered or encountered,
i.e. they are not in A. We formally define the probability that a video sequence is unexplained (totally or partially ) w.r.t. A. We
develop efficient algorithms to identify the top-k Totally and Partially Unexplained Activities in a video w.r.t. A. Our algorithms use
neat mathematical properties of the definitions for efficiency. We describe experiments using two real-world datasets showing
that our approach works well in practice in terms of both running time and accuracy.

F

1 INTRODUCTION

Video surveillance is omnipresent. For instance, airport
baggage areas are continuously monitored for suspicious
activities. In crime-ridden neighborhoods, police often
monitor streets and parking lots using video surveillance.
In Israel, highways are monitored by a central authority for
suspicious activities. However, all these applications search
for known activities – activities that have been identified
in advance as being either “normal” or “abnormal”. For
instance, in the highway application, security officers may
look both for normal behavior (e.g. driving along the
highway in a certain speed range unless traffic is slow)
as well as “suspicious” behavior (e.g. stopping the car near
a bridge, taking a package out and leaving it on the side of
the road before driving away).

In this paper, we are given a set A of activity definitions
expressed as stochastic automata with temporal constraints
(extending [1]).1 A can contain “normal” activities or
“suspicious” activities or both. We then try to find video
sequences that are not “sufficiently explained” by any of the
activities in A. For instance, in an airport, we may know of
certain patterns that are suspicious, but we may also know
that there are many activity patterns that a criminal/terrorist
may use that we cannot possibly predict. Such “unknown”
activities are “unexplained” in our framework.

We achieve this via a possible-worlds based model and
define the probability that a sequence of video is totally (or

• M. Albanese is with the Department of Applied Information Technology,
George Mason University, Nguyen Engineering Building, Fairfax, VA
22030. E-mail: malbanes@gmu.edu

• C. Molinaro and V. S. Subrahmanian are with the Department
of Computer Science and UMIACS, University of Maryland, A.V.
Williams Building, College Park, MD 20742. E-mail: {molinaro,
vs}@umiacs.umd.edu

• F. Persia and A. Picariello, are with Dipartimento di Informatica e
Sistemistica, Università di Napoli “Federico II”, Via Claudio 21, 80125
Napoli, Italy. E-mail: {fabio.persia, picus}@unina.it

1. Stochastic automata are closely related to both HMM and DBN
framework that have been studied extensively in activity detection.

partially) unexplained. Based on this, users can specify a
probability threshold and look for all sequences that are to-
tally (or partially) unexplained with a probability exceeding
the threshold. We then show different important properties
we can leverage to make the search of unexplained activities
more efficient. We define algorithms to find top-k totally
and partially unexplained activities. We develop a prototype
implementation and report on experiments using two data
sets showing that the algorithms work well in practice, both
from an efficiency perspective and an accuracy perspective.

The paper starts (Section 2) with an overview of related
work. Section 3 provides basic definitions of stochastic
activities slightly extending [1]. Section 4 defines the
probability that a video sequence is totally (or partially)
unexplained. We also define the problem of finding the top-
k (totally or partially) unexplained activities and classes.
Section 5 derives theorems that enable fast search for
totally and partially unexplained video sequences. Section 6
presents algorithms for solving the problems introduced in
Section 4. Section 7 describes our experiments. The paper
concludes in Section 8. 2

2 RELATED WORK

A Priori Definitions. Several researchers have studied
how to search for specifically defined patterns of nor-
mal/abnormal activities [2]. [3] studies how HMMs can
be used to recognize complex activites, while [4] and [5]
use coupled HMMs. [6] uses Dynamic Bayesian Networks
(DBNs) to capture causal relationships between observa-
tions and hidden states. [1] developed a stochastic au-
tomaton based language to detect activities in video, while
[7] presented an HMM-based algorithm. In contrast, this
paper starts with a set A of activity models (corresponding
to normal/abnormal activities) and finds video sequences
that are not sufficiently explained by the models in A.

2. All proofs are reported in a detachable appendix included for the
convenience of the reviewers.
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Such unexplained sequences reflect activity occurrences for
which no model exists a priori.
Learning and then detecting abnormality. Several re-
searchers first learn normal activity models and then detect
abnormal/unusual events. [8] suggests a semi-supervised
approach to detect abnormal events that are rare, unex-
pected, and relevant. We do not require “unexplained”
events to either be rare or relevant. [9] uses HMMs to detect
rare events, while [10] defines an anomaly as an atypical be-
havior pattern that is not represented by sufficient samples
in a training dataset and satisfies an abnormal pattern. [11]
defines abnormality as unseen or rarely occurring events
— an initial video is used to learn normal behaviors. [12]
shows how to detect users with abnormal activities from
sensors attached to human bodies. An abnormal activity is
defined as “an event that occurs rarely and has not been
expected in advance”. Abnormal activities become normal
when they start occur more often. The same notion of
abnormal activity is considered in [13] and [14]. [15] learns
patterns of activities overtime in an unsupervised way. [16]
deals with detecting individual anomalies in crowd scenes
— an anomaly is defined as a rare or infrequent behavior
compared to all other behaviors. The normality/abnormality
of an individual behavior is evaluated w.r.t. a specific
context. Then, usual activities are accepted as normal and
deviant activity patterns are flagged as abnormal. All these
approaches first learn normal activity models and then
detect abnormal/unusual events. These papers differ from
ours because they consider rare events to be abnormal. In
contrast, we consider activities to be abnormal even if they
are not rare. For example, if a new way to break into cars
has proliferated during the past month, then we want to flag
those activities as “unexplained” even if they are no longer
rare. In addition, if a model exists for a rare activity, we
would flag it as normal, while many of these frameworks
would not.
Similarity-based abnormality. [17] proposes an unsuper-
vised technique in which no activity model is required a
priori and no explicit models of normal activities are built.
Each event in the video is compared with all other observed
events to determine how many similar events exist. Unusual
events are events for which there are no similar events in
the video. Hence, this work also considers unusual activity
as a rare event and a large number of observations is
required to verify if an activity is indeed unusual. [18]
uses a similar approach: a scene is considered anomalous
when the maximum similarity between the scene and all
previously viewed scenes is below a threshold. This is
also similar to [19] where frequently occurred patterns are
normal and patterns that are dissimilar from most patterns
are anomalous. [20] learns trajectory prototypes and detects
anomalous behaviors when visual trajectories deviate from
the self-learned representations of typical behaviors. In [3],
activities performed by a group of moving and interacting
objects are modeled as shapes and abnormal activities are
then defined as a change in the shape activity model.
Other relevant work. [21] develops an algorithm that
collects low-level scene observations representing routine

activities. Unusual events are detected by monitoring the
scene with monitors which extracts local low-level observa-
tions from the video stream. Given a new observation, the
monitor computes the likelihood of this observation with
respect to the probability distribution of prior observations.
If the likelihood falls below a certain threshold, then the
monitor outputs an alert. The local alerts issued by the
monitors are then combined. [22] automatically learns
high frequency events (taking spatio-temporal aspects into
account) and declares them normal; then, events deviating
from these rules are anomalies.

3 BASIC ACTIVITY MODEL

This section extends the stochastic activity model of [1]
(though we make no claims of novelty for this). We
assume the existence of a finite set S of action symbols,
corresponding to atomic actions that can be detected by
image understanding methods.

Definition 3.1 (Stochastic activity): A stochastic activity
is a labeled directed graph A = (V,E, δ, ρ) where

• V is a finite set of nodes labeled with action symbols
from S;

• E ⊆ V × V is a set of edges;
• δ : E → N+ associates, with each edge ⟨vi, vj⟩, an

upper bound on the time that can elapse between vi
and vj ;

• ρ is a function that associates, with each node v ∈ V
having out-degree 1 or more, a probability distribution
on {⟨v, v′⟩ | ⟨v, v′⟩ ∈ E}, i.e.,

∑
⟨v,v′⟩∈E

ρ(⟨v, v′⟩) = 1;

• {v ∈ V | @ v′ ∈ V s.t. ⟨v′, v⟩ ∈ E} ̸= ∅, i.e., there
exists at least one start node in the activity definition;

• {v ∈ V | @ v′ ∈ V s.t. ⟨v, v′⟩ ∈ E} ̸= ∅, i.e., there
exists at least one end node in the activity definition.

Figure 1 shows an example of stochastic activity model-
ing deposits at an Automatic Teller Machine (ATM). Each
edge e is labeled with (δ(e), ρ(e)). For instance, the two
edges starting at node insertCard mean that there is a
50% probability of going to node insertChecks and a
50% probability of going to node insertCash from node
insertCard. In addition, it is required that insertChecks
and insertCash follow insertCard within 2 and 1 time
units, respectively. For the purpose of this paper, this
example is simplified (e.g., we avoided talking about the
customer typing on the keypad, etc.). In general, actions can
be easily detected by either an image processing algorithm
(e.g. detectPerson would check if a person is present in
the image) or a sensor (e.g. to detect if insertCard holds).

insertChecks

insertCard

insertCash

pickupReceipt withdrawCard 

(2, 0.5)

(1, 0.5)

(2, 0.8)

(1, 1)

(2, 0.2)

(1, 0.3)

(2, 0.7)

ʹ

detectPerson
(3, 1)

Fig. 1: Example of stochastic activity: ATM deposit
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This framework extends [1] by adding the function δ
which expresses a constraint on the maximum “temporal
distance” between two actions in an activity.

Definition 3.2 (Stochastic activity instance): An
instance of a stochastic activity (V,E, δ, ρ) is a sequence
⟨s1, . . . , sm⟩ of nodes in V such that

• ⟨si, si+1⟩ ∈ E for 1 ≤ i < m;
• {s | ⟨s, s1⟩ ∈ E} = ∅, i.e., s1 is a start node; and
• {s | ⟨sm, s⟩ ∈ E} = ∅, i.e., sm is an end node.

The probability of the instance is
∏m−1

i=1 ρ(⟨si, si+1⟩).
Thus, an instance of a stochastic activity A is a path

in A from a start node to an end node. In Figure 1,
⟨detectPerson, insertCard, insertCash, withdrawCard⟩ is an
instance with probability 0.35. Throughout this paper, we
assume an arbitrary but fixed set A of stochastic activities.

A video is a finite sequence of frames. Each frame f
has an associated timestamp, denoted f.ts; without loss of
generality, we assume timestamps to be positive integers. A
labeling ℓ of a video v is a mapping ℓ : v → 2S that takes
a video frame f ∈ v as input, and returns a set of action
symbols ℓ(f) ⊆ S as output. Intuitively, a labeling can
be computed via an appropriate suite of image processing
algorithms and specifies the actions detected in each frame
of a video.

Example 3.1: Consider a video v = ⟨f1, f2, f3, f4, f5⟩,
with fi.ts = i for 1 ≤ i ≤ 5. A possible labeling ℓ
of v is: ℓ(f1) = {detectPerson}, ℓ(f2) = {insertCard},
ℓ(f3) = {insertCash}, ℓ(f4) = {withdrawCash}, ℓ(f5) =
{withdrawCard}.

Suppose S1 = ⟨a1, . . . , an⟩ and S2 = ⟨b1, . . . , bm⟩ are
two sequences. S2 is a subsequence of S1 iff there exist
1 ≤ j1 < j2 < . . . < jm ≤ n s.t. bi=aji for 1 ≤ i ≤ m.
If ji = ji+1 − 1 for 1 ≤ i < m, then S2 is a contiguous
subsequence of S1. We write S1∩S2 ̸= ∅ iff S1 and S2 have
a common element and write e ∈ S1 iff e is an element
appearing in S1. The concatenation of S1 and S2, i.e., the
sequence ⟨a1, . . . , an, b1, . . . , bm⟩, is denoted by S1 · S2.
Finally, we use |S1| to denote the length of S1, that is, the
number of elements in S1.

We now define an occurrence of a stochastic activity in
a video.

Definition 3.3 (Activity occurrence): Let v be a video, ℓ
a labeling of v, and A= (V,E, δ, ρ) a stochastic activity.
An occurrence o of A in v w.r.t. ℓ is a sequence ⟨(f1, s1),
. . . , (fm, sm)⟩ such that

• ⟨f1, . . . , fm⟩ is a subsequence of v,
• ⟨s1, . . . , sm⟩ is an instance of A,
• si ∈ ℓ(fi), for 1 ≤ i ≤ m, and 3

• fi+1.ts− fi.ts ≤ δ(⟨si, si+1⟩), for 1 ≤ i < m.
The probability of o, denoted p(o), is the probability of the
instance ⟨s1, . . . , sm⟩.

When concurrently monitoring multiple activities, shorter
activity instances generally tend to have higher probability.

3. With a slight abuse of notation, we use si to refer to both node si
and the action symbol labeling it.

To remedy this, we normalize occurrence probabilities by
introducing the relative probability p∗(o) of an occurrence
o of activity A as p∗(o) = p(o)

pmax
, where pmax is the highest

probability of any instance of A.

Example 3.2: Consider the video and the labeling of
Example 3.1. An occurrence of the activity of Figure 1 is
o = ⟨(f1, detectPerson), (f2, insertCard), (f3, insertCash),
(f5,withdrawCard)⟩, and p∗(o) = 0.875.

We use O(v, ℓ) to denote the set of all activity occur-
rences in v w.r.t. ℓ. Whenever v and ℓ are clear from the
context, we write O instead of O(v, ℓ).

4 UNEXPLAINED ACTIVITY PROBABILITY
MODEL

This section defines the probability that a video sequence
is unexplained by A. We note that the occurrence of an
activity in a video can involve conflicts. For instance,
consider the activity occurrence o in Example 3.2 and
suppose there is a second activity occurrence o′ such that
(f1, detectPerson) ∈ o′. In this case, there is an implicit
conflict because (f1, detectPerson) belongs to both occur-
rences, but in fact, detectPerson can only belong to one
activity occurrence, i.e. though o and o′ may both have a
non-zero probability, the probability that these two activity
occurrences coexist is 0. Formally, we say two activity
occurrences o, o′ conflict, denoted o � o′, iff o ∩ o′ ̸= ∅.
We now use this to define possible worlds.

Definition 4.1 (Possible world): A possible world for a
video v and a labeling ℓ is a subset w of O s.t. @oi, oj ∈
w, oi � oj .

Thus, a possible world is a set of activity occurrences
which do not conflict with one another, i.e., an action
symbol in a frame cannot belong to two distinct activity
occurrences in the same world. We use W(v, ℓ) to denote
the set of all possible worlds for a video v and a labeling
ℓ; whenever v and ℓ are clear from the context, we simply
write W .

Example 4.1: Consider a video with two conflicting oc-
currences o1, o2. There are 3 possible worlds: w0 = ∅,
w1 = {o1}, and w2 = {o2}. Note that {o1, o2} is not
a world as o1 � o2. Each world represents a way of
explaining what is observed. The first world corresponds to
the case where nothing is explained, the second and third
worlds correspond to the scenarios where we use one of
the two possible occurrences to explain the observed action
symbols.

Note that any subset of O not containing conflicting
occurrences is a legitimate possible world — possible
worlds are not required to be maximal w.r.t. ⊆. In the
above example, the empty set is a possible world even
though there are two other possible worlds w1 = {o1} and
w2 = {o2} which are supersets of it. The reason is that
o1 and o2 are uncertain, so the scenario where neither o1
nor o2 occurs is a legitimate one. We further illustrate this
point below.
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

o1 o3 o4

o2 o5

Fig. 2: Conflict-Based Partitioning of a video

Example 4.2: Suppose we have a video where a single
occurrence o has p∗(o) = 0.6. In this case, it is natural to
say that there are two possible worlds w0=∅ and w1={o}
and expect the probabilities of w0 and w1 to be 0.4 and 0.6,
respectively. By restricting ourselves to maximal possible
worlds only, we would have only one possible world, w1,
whose probability is 1, which is wrong.

We use ∗� to denote the transitive closure of �. Clearly,
∗� is an equivalence relation and determines a partition of
O into equivalence classes O1, . . . ,Om.

Example 4.3: Suppose we have a video
v = ⟨f1, . . . , f16⟩ and a labeling ℓ such that five
occurrences o1, o2, o3, o4, o5 are detected as depicted in
Figure 2, that is, o1 � o2, o2 � o3, and o4 � o5. There
are two equivalence classes determined by ∗�, namely
O1 = {o1, o2, o3} and O2 = {o4, o5}.

The equivalence classes determined by ∗� lead to a
conflict-based partitioning of a video.

Definition 4.2 (Conflict-Based Partitioning): Let v be a
video, ℓ a labeling, and O1, . . . ,Om the equivalence classes
determined by ∗�. A Conflict-Based Partitioning (CBP) of
v (w.r.t. ℓ) is a sequence ⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ such that:

• v1 · . . . · vm = v;
• ℓi is the restriction of ℓ to vi, i.e., it is a labeling of

vi s.t. ∀f ∈ vi, ℓi(f) = ℓ(f), for 1 ≤ i ≤ m; and
• O(vi, ℓi) = Oi, for 1 ≤ i ≤ m.

The vi’s are called segments.

Example 4.4: A CBP of the video in Example 4.3
is ⟨(v1, ℓ1), (v2, ℓ2)⟩, where v1 = ⟨f1, . . . , f9⟩, v2 =
⟨f10, . . . , f16⟩, ℓ1 and ℓ2 are the restrictions of ℓ to v1 and
v2, respectively. Another partitioning of the same video is
the one where v1 = ⟨f1, . . . , f10⟩ and v2 = ⟨f11, . . . , f16⟩.

Thus, activity occurrences determine a set of possible
worlds (intuitively, different ways of explaining the video).
We wish to find a probability distribution over all possible
worlds that (i) is consistent with the relative probabilities
of the occurrences, and (ii) takes conflicts into account. We
assume the user specifies a function Weight : A → R+

which assigns a weight to each activity and prioritizes
the importance of the activity.4 The weight of an occur-
rence o of activity A is the weight of A. We use C(o)
to denote the set of occurrences conflicting with o, i.e.,
C(o) = {o′ | o′ ∈ O ∧ o′ � o}. Note that o ∈ C(o);
and C(o) = {o} when o does not conflict with any other

4. For instance, highly threatening activities may be assigned a high
weight.

occurrence. Finally, we assume that activity occurrences
belonging to different segments are independent events.
Suppose pi denotes the (unknown) probability of world wi.
As we know the probability of occurrences, and as each
occurrence occurs in certain worlds, we can induce a set
of nonlinear constraints that will subsequently be used to
learn the values of the pi’s.

Definition 4.3: Let v be a video, ℓ a labeling, and
O1, . . . ,Om the equivalence classes determined by ∗�. We
define the non-linear constraints NLC(v, ℓ) as follows:

pi ≥ 0, ∀wi ∈ W∑
wi∈W

pi = 1

∑
wi∈W s.t. o∈wi

pi = p∗(o) · Weight(o)∑
oj∈C(o) Weight(oj)

,∀o ∈ O

pj =

m∏
k=1

∑
wi∈W s.t. wi∩Ok=wj∩Ok

pi ∀wj ∈ W

The first two types of constraints enforce a probability
distribution over the set of possible worlds. The third type
of constraint ensures that the probability of occurrence
o – which is the sum of the probabilities of the worlds
containing o – is equal to its relative probability p∗(o)

weighted by Weight(o)∑
oj∈C(o) Weight(oj)

, the latter being the weight

of o divided by the sum of the weights of the occurrences
conflicting with o. Note that: (i) the value on the right-
hand side of the third type of constraint decreases as the
amount of conflict increases, (ii) if an occurrence o is not
conflicting with any other occurrence, then its probability∑

wi∈W s.t. o∈wi
pi is equal to p∗(o), i.e. the probability

returned by the stochastic automaton. The last kind of
constraint reflects the independence between segments. In
general NLC(v, ℓ) might admit multiple solutions.

Example 4.5: Consider a single-segment video consist-
ing of frames f1, . . . , f9 shown in Figure 2. Suppose the
three occurrences o1, o2, o3 have been detected with relative
probabilities 0.3, 0.6, and 0.5, respectively. Suppose the
weights of o1, o2, o3 are 1, 2, 3, respectively. Five worlds
are possible in this case: w0 = ∅, w1 = {o1}, w2 = {o2},
w3 = {o3}, and w4 = {o1, o3}. Then, NLC(v, ℓ) is:5

pi ≥ 0 0 ≤ i ≤ 4
p0 + p1 + p2 + p3 + p4 = 1
p1 + p4 = 0.3 · 1

3

p2 = 0.6 · 1
3

p3 + p4 = 0.5 · 3
5

which has multiple solutions. One solution is p0 = 0.4,
p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0. Another solution is
p0 = 0.5, p1 = 0, p2 = 0.2, p3 = 0.2, p4 = 0.1.

In the rest of the paper, we assume that
NLC(v, ℓ) is solvable.6 We say that a sequence
S = ⟨(f1, s1), . . . , (fn, sn)⟩ occurs in a video v w.r.t. a
labeling ℓ iff ⟨f1, . . . , fn⟩ is a contiguous subsequence of

5. For brevity, we do not explicitly list the independence constraints.
6. This can be easily checked via both a non-linear constraint solver,

as well as methods developed in the next section.
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v and si ∈ ℓ(fi) for 1 ≤ i ≤ n. We give two semantics
for S to be unexplained in a world w ∈ W:

1) S is totally unexplained in w, denoted w2TS, iff
∀(fi, si) ∈ S, @o ∈ w, (fi, si) ∈ o;

2) S is partially unexplained in w, denoted w2PS, iff
∃(fi, si) ∈ S, @o ∈ w, (fi, si) ∈ o.

Intuitively, S is totally (resp. partially) unexplained in w
iff w does not explain every (resp. at least one) symbol of
S. We now define the probability that a sequence occurring
in a video is totally or partially unexplained.

Definition 4.4: Let v be a video, ℓ a labeling, and S a
sequence occurring in v w.r.t. ℓ. The probability interval
that S is totally unexplained in v w.r.t. ℓ is IT (S) = [l, u],
where:

l = minimize
∑

wi∈W s.t. wi2TS pi
subject to NLC(v, ℓ)

u = maximize
∑

wi∈W s.t. wi2TS pi
subject to NLC(v, ℓ)

The probability interval that S is partially unexplained in
v w.r.t. ℓ is IP (S) = [l′, u′], where l′, u′ are derived in
exactly the same way as l, u above by replacing the 2T

symbols in the above optimization problems by 2P .

Thus, the probability that a sequence S occurring in v
is totally (resp. partially) unexplained w.r.t. to a solution of
NLC(v, ℓ) is the sum of the probabilities of the worlds
in which S is totally (resp. partially) unexplained. As
NLC(v, ℓ) may have multiple solutions, we find the tight-
est interval [l, u] (resp. [l′, u′]) containing this probability
for any solution. Different criteria can be used to infer a
value from an interval [l, u], e.g. the MIN l, the MAX u, the
average (i.e., (l+ u)/2), etc. Clearly, the only requirement
is that this value has to be in [l, u]. In the rest of the paper
we assume that one of the above criteria has been chosen
— PT (S) (resp. PP (S)) denotes the probability that S is
totally (resp. partially) unexplained.

Proposition 4.1: Consider two sequences S1 and S2

occurring in a video. If S1 is a subsequence of S2, then
PT (S1) ≥ PT (S2) and PP (S1) ≤ PP (S2).

We now define totally and partially unexplained activity
occurrences.

Definition 4.5 (Unexplained activity occurrence): Let v
be a video, ℓ a labeling, τ ∈ [0, 1] a probability threshold,
and L ∈ N+ a length threshold. Then,

• a totally unexplained activity occurrence is a sequence
S occurring in v s.t. (i) PT (S) ≥ τ , (ii) |S| ≥ L, and
(iii) S is maximal, i.e., there does not exist a sequence
S′ ̸= S occurring in v s.t. S is a subsequence of S′,
PT (S

′) ≥ τ , and |S′| ≥ L.
• a partially unexplained activity occurrence is a se-

quence S occurring in v s.t. (i) PP (S) ≥ τ , (ii)
|S| ≥ L, and (iii) S is minimal, i.e., there does not
exist a sequence S′ ̸= S occurring in v s.t. S′ is a
subsequence of S, PP (S

′) ≥ τ , and |S′| ≥ L.

In the definition above, L is the minimum length a
sequence must be for it to be considered a possible unex-

plained activity occurrence. Totally unexplained activities
(TUAs for short) S have to be maximal because once we
find S, any sub-sequence of it is (totally) unexplained with
probability greater than equal to that of S. On the other
hand, partially unexplained activities (PUAs for short) S′

have to be minimal because once we find S′, any super-
sequence of it is (partially) unexplained with probability
greater than or equal to that of S′.

Intuitively, an unexplained activity occurrence is a se-
quence of action symbols that are observed in the video
and poorly explained by the known activity models. Such
sequences might correspond to unknown variants of known
activities or to entirely new – and unknown – activities.

An Unexplained Activity Problem (UAP) instance is a
4-tuple I = ⟨v, ℓ, τ, L⟩ where v is a video, ℓ is a labeling,
τ ∈ [0, 1] is a probability threshold, and L ∈ N+ is a length
threshold. We want to find the sets Atu(I) and Apu(I) of
all totally and partially unexplained activities, respectively.
When I is clear from context, we will drop it.

The following definition introduces the top-k totally
and partially unexplained activities. Intuitively, these are
k unexplained activities having maximum probability.

Definition 4.6 (Top-k unexplained activities): Consider
an UAP instance and let k ∈ N+. Atu

k ⊆ Atu (resp.
Apu

k ⊆ Apu) is a set of top-k totally (resp. partially)
unexplained activities iff |Atu

k | = min{k, |Atu|} (resp.
|Apu

k | = min{k, |Apu|}), and ∀S ∈ Atu
k ,∀S′ ∈ Atu −Atu

k

(resp. ∀S ∈ Apu
k , ∀S′ ∈ Apu − Apu

k ) PT (S) ≥ PT (S
′)

(resp. PP (S) ≥ PP (S
′)).

Suppose we have an UAP instance. For any S, S′ ∈ Atu

(resp. S, S′ ∈ Apu), we write S =T S′ (resp. S =P S′) iff
PT (S) = PT (S

′) (resp. PP (S) = PP (S
′)). Obviously, =T

(resp. =P ) is an equivalence relation and determines a set
Ctu (resp. Cpu) of equivalence classes. For any equivalence
class C ∈ Ctu (resp. C ∈ Cpu) we define PT (C) (resp.
PP (C)) as the (unique) probability of the sequences in C.

The top-k totally and partially unexplained classes are
the k classes having maximum probability. Compared with
the top-k unexplained activities, here we want to return all
the unexplained activities having the k highest probabilities.

Definition 4.7 (Top-k unexplained classes): Consider an
UAP instance and let k ∈ N+. Ctu

k ⊆ Ctu (resp. Cpu
k ⊆

Cpu) is the set of top-k totally (resp. partially) unex-
plained classes iff |Ctu

k | = min{k, |Ctu|} (resp. |Cpu
k | =

min{k, |Cpu|}), and ∀C ∈ Ctu
k , ∀C ′ ∈ Ctu − Ctu

k (resp.
∀C ∈ Cpu

k , ∀C ′ ∈ Cpu − Cpu
k ) PT (C) > PT (C

′) (resp.
PP (C) > PP (C

′)).

5 PROPERTIES OF UAPS

This section derives properties of UAPs that can be lever-
aged (in the next section) to devise efficient algorithms
to solve UAPs. We first show an interesting property
concerning the solution of NLC(v, ℓ) (some subsequent
results rely on it); then, in the following two subsections,
we consider specific properties for totally and partially
unexplained activities.
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For a given video v and labeling ℓ, we now show that
if ⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ is a CBP, then we can find
the solutions of the non-linear constraints NLC(v, ℓ) by
solving m smaller sets of linear constraints.7 We define
LC(v, ℓ) as the set of linear constraints of NLC(v, ℓ) (thus,
we include all the constraints of Definition 4.3 except for
the last kind). Henceforth, we use W to denote W(v, l)
and Wi to denote W(vi, ℓi), 1 ≤ i ≤ m. A solution of
NLC(v, ℓ) is a mapping P : W → [0, 1] which satisfies
NLC(v, ℓ). Likewise, a solution of LC(vi, ℓi) is a mapping
Pi : Wi → [0, 1] which satisfies LC(vi, ℓi). It is important
to note that W = {w1 ∪ . . . ∪wm | wi ∈ Wi, 1 ≤ i ≤ m}.

Theorem 1: Let v be a video, ℓ a labeling, and
⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ a CBP. P is a solution of
NLC(v, ℓ) iff ∀i ∈ [1,m] there exists a solution Pi

of LC(vi, ℓi) s.t. P(
∪m

i=1 wi) =
∏m

i=1 Pi(wi) for every
w1 ∈ W1, . . . , wm ∈ Wm.

The following example illustrates the previous theorem.

Example 5.1: Consider the video v and the labeling ℓ
of Example 4.3 (cf. Figure 2). As shown in Example 4.4,
one possible CBP of v and ℓ is ⟨(v1, ℓ1), (v2, ℓ2)⟩, where
v1 = ⟨f1, . . . , f9⟩, v2 = ⟨f10, . . . , f16⟩, ℓ1 and ℓ2 are the
restrictions of ℓ to v1 and v2, respectively. Theorem 1 says
that for each solution P of NLC(v, ℓ), there is a solution
P1 of LC(v1, ℓ1) and a solution P2 of LC(v2, ℓ2) s.t.
P(w1 ∪w2) = P1(w1)×P(w2) for every w1 ∈ W1, w2 ∈
W2, and vice versa.

Consider a video v and a labeling ℓ, and let
⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ be a CBP. Given a sequence
S = ⟨(f1, s1), . . . , (fq, sq)⟩ occurring in v, we say that
vi, vi+1, . . . , vi+n (1 ≤ i ≤ i+ n ≤ m) are the sub-videos
containing S iff f1 ∈ vi and fq ∈ vi+n. In other words, S
spans the sub-videos vi, vi+1, . . . , vi+n: it starts at a point
in sub-video vi (as vi contains the first frame of S) and
ends at some point in sub-video vi+n (as vi+n contains the
last frame of S). Sk denotes the projection of S on the k-th
sub-video vk (i ≤ k ≤ i + n), that is, the subsequence of
S containing all the pairs (f, s) ∈ S with f ∈ vk.

Example 5.2: Suppose we have a video
v = ⟨f1, . . . , f21⟩ and a labeling ℓ such that
ℓ(fi) = {si} for 1 ≤ i ≤ 21. In addition, suppose
8 occurrences are detected as shown in Figure 3.
Consider the CBP ⟨(v1, ℓ1), (v2, ℓ2), (v3, ℓ3), (v4, ℓ4)⟩,
where v1 = {f1, . . . , f5}, v2 = {f6, . . . , f10},
v3 = {f11, . . . , f16}, v4 = {f17, . . . , f21}, and ℓi is
the restrictions of ℓ to vi, for 1 ≤ i ≤ 4.

Consider now the sequence S =
⟨(f8, s8), . . . , (f14, s14)⟩ occurring in v. Then, v2
and v3 are the sub-videos containing S. Moreover,
S2 denotes ⟨(f8, s8), . . . , (f10, s10)⟩, and S3 denotes
⟨(f11, s11), . . . , (f14, s14)⟩.

7. This therefore yields two benefits: first it allows us to solve a smaller
set of constraints, and second, it allows us to solve linear constraints which
are usually easier to solve than nonlinear ones.

o1

o2

o3

o4

o5

o6

o7

o8

f1 f2 f3 f4 f5 f6 f7 f8 f9 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21f11f10

S

Fig. 3: Conflict-Based Partitioning of a video

5.1 Totally unexplained activities
The following theorem says that we can compute IT (S)
by solving LC (which are linear constraints) for each sub-
video containing S (instead of solving a non-linear set of
constraints for the whole video).

Theorem 2: Consider a video v and a labeling ℓ. Let
⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ be a CBP and ⟨vi, . . . , vi+n⟩ be
the sub-videos containing a sequence S occurring in v. For
i ≤ k ≤ i+ n, let

lk = minimize
∑

wh∈Wk s.t. wh2TSk
ph

subject to LC(vk, ℓk)
uk = maximize

∑
wh∈Wk s.t. wh2TSk

ph
subject to LC(vk, ℓk)

If IT (S) = [l, u], then l =
∏i+n

k=i lk and u =
∏i+n

k=i uk.

The following example illustrates the theorem above.

Example 5.3: Consider the setting of Example 5.2,
which is depicted in Figure 3. By definition, IT (S) can
be computed by solving the non-linear program of Defini-
tion 4.4 for the whole video v. Alternatively, Theorem 2
says that IT (S) can be computed as IT (S) = [l2 ×
l3, u2×u3], where l2, u2, l3, u3 are computed as defined in
Theorem 2, that is, by solving two smaller linear programs
for v2 and v3.

The following theorem provides a sufficient condition for
a pair (f, s) not to be included in any sequence S occurring
in v and having PT (S) ≥ τ .

Theorem 3: Let ⟨v, ℓ, τ, L⟩ be a UAP instance. Given
(f, s) s.t. f ∈ v and s ∈ ℓ(f), let ε =

∑
o∈O s.t. (f,s)∈o

p∗(o) ·

Weight(o)∑
oj∈C(o) Weight(oj)

. If ε > 1 − τ , then there does not

exist a sequence S occurring in v s.t. (f, s) ∈ S and
PT (S) ≥ τ .

If the above condition holds for a pair (f, s), then we
say that (f, s) is sufficiently explained. Note that to check
whether a pair (f, s) is sufficiently explained, we do not
need to solve any set of linear or non-linear constraints,
since ε is computed by simply summing the (weighted)
probabilities of the occurrences containing (f, s). Thus,
this result yields a further efficiency. A frame f is suffi-
ciently explained iff (f, s) is sufficiently explained for every
s ∈ ℓ(f). If (f, s) is sufficiently explained, then it can
be disregarded for the purpose of identifying unexplained
activity occurrences, and, in addition, this may allow us to
disregard entire parts of videos as shown in the example
below.
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Example 5.4: Consider a UAP instance ⟨v, ℓ, τ, L⟩
where v = ⟨f1, . . . , f9⟩ and ℓ is s.t. ℓ(fi) = {si} for
1 ≤ i ≤ 9, as depicted in Figure 4.

Fig. 4: Sufficiently explained frames in a video.

Suppose L = 3 and (f1, s1), (f4, s4), (f6, s6) are
sufficiently explained. Even though we could apply the
theorem to only a few (fi, si) pairs, we can conclude that
no unexplained activity occurrence can be found before f7,
because L = 3.

Given a UAP instance I = ⟨v, ℓ, τ, L⟩ and a subsequence
v′ of v, v′ is relevant iff (i) v′ is a contiguous subsequence
of v (ii) |v′| ≥ L, (iii) ∀f ∈ v′, f is not sufficiently
explained, and (iv) v′ is maximal (i.e., there does not exist
v′′ ̸= v′ s.t. v′ is a subsequence of v′′ and v′′ satisfies (i),
(ii), (iii)). We use relevant(I) to denote the set of relevant
sub-videos.

Theorem 3 entails that relevant sub-videos can be indi-
vidually considered when looking for totally unexplained
activities because there is no totally unexplained activity
spanning two different relevant sub-videos.

5.2 Partially unexplained activities
The following theorem states that we can compute IP (S)
by solving NLC for the sub-video consisting of the seg-
ments containing S (instead of solving NLC for the whole
video).

Theorem 4: Consider a video v and a labeling ℓ. Let
⟨(v1, ℓ1), . . . , (vm, ℓm)⟩ be a CBP and ⟨vi, . . . , vi+n⟩ be
the sub-videos containing a sequence S occurring in v. Let
v∗ = vi · . . . ·vi+n and ℓ∗ be a labeling for v∗ s.t., for every
f ∈ v∗, ℓ∗(f) = ℓ(f). IP (S) computed w.r.t. v and ℓ is
equal to IP (S) computed w.r.t. v∗ and ℓ∗.

We now illustrate the use of the preceding theorem.

Example 5.5: Consider the setting of Example 5.2,
which is depicted in Figure 3. By definition, IP (S) can
be computed by solving the non-linear program of Defi-
nition 4.4 for the whole video v. Alternatively, Theorem 4
says that IP (S) can be computed by solving the non-linear
program of Definition 4.4 for the sub-video v∗ = v2 · v3.

6 TOP-k ALGORITHMS
We now present algorithms to find top-k totally and
partially unexplained activities and classes. For ease of
presentation, we assume |ℓ(f)| = 1 for every frame f in
a video (this makes the algorithms much more concise –
generalization to the case of multiple action symbols per
frame is straightforward8). Given a video v = ⟨f1, . . . , fn⟩,
we use v(i, j) (1 ≤ i ≤ j ≤ n) to denote the sequence
S = ⟨(fi, si), . . . , (fj , sj)⟩, where sk is the only element
in ℓ(fk), i ≤ k ≤ j.

8. Indeed, it suffices to consider the different sequences given by the
different action symbols.

6.1 Top-k TUA and TUC
The Top-k TUA algorithm computes a set of top-k totally
unexplained activities in a video. Note that:

• at every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PT (S) | S ∈ TopSol} if |TopSol| = k

• On line 30, “Add S to TopSol” works as follows:
– If |TopSol| < k, then S is added to TopSol;
– otherwise, a sequence S′ in TopSol having min-

imum PT (S
′) is replaced by S.

Leveraging Theorem 3, Top-k TUA considers only rel-
evant sub-videos of v individually (line 2). When it finds
a sequence v′(start, end) of length at least L having a
probability of being totally unexplained greater than lowest
(line 5), it makes the sequence maximal by adding frames
on the right (lines 7–14). Instead of adding one frame
at a time, v′(start, end) is extended by L frames at a
time until its probability drops below τ (lines 9–10); a
binary search is then performed to find the exact maximum
length of the unexplained activity (lines 15–25). Note that,
when making the sequence maximal, if at some point the
algorithm realizes that the unexplained activity will not
have a probability greater than lowest (i.e. the sequence is
not a top-k TUA), then the sequence is disregarded and the
above process of making the sequence maximal is aborted
(lines 12–14 and 19–21). This kind of pruning allows the
algorithm to move forward in the video avoiding computing
the exact ending frame of the TUA thereby saving time.
Throughout the algorithm, PT is computed by applying
Theorem 2.

Theorem 5: Algorithm Top-k TUA returns a set of top-k
totally unexplained activities of the input instance.

Algorithm Top-k TUC modifies Top-k TUA as follows
to compute the top-k totally unexplained classes:

• At every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PT (C) | C ∈ TopSol} if |TopSol| = k

• “Add S to TopSol” (line 30) works as follows:
– If there exists C ∈ TopSol s.t. PT (C) = PT (S),

then S is added to C;
– else if |TopSol| < k, then the class {S} is added

to TopSol;
– otherwise the class C in TopSol having minimum

PT (C) is replaced with {S}.
• On line 5, PT (v

′(start, end)) > lowest is replaced
with PT (v

′(start, end)) ≥ lowest;
• On line 12, PT (v

′(start, end)) ≤ lowest is replaced
with PT (v

′(start, end)) < lowest;
• On line 19, PT (v

′(start,mid)) ≤ lowest is replaced
with PT (v

′(start,mid)) < lowest;
The algorithm obtained by applying the modifications

above is named Top-k TUC.

Theorem 6: Algorithm Top-k TUC returns the top-k
totally unexplained classes of the input instance.
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Algorithm 1 Top-k TUA
Input: UAP instance I = ⟨v, ℓ, τ, L⟩, k ≥ 1
Output: Top-k totally unexplained activities
1: TopSol = ∅
2: for all v′ ∈ relevant(I) do
3: start = 1; end = L
4: repeat
5: if PT (v′(start, end)) ≥ τ∧PT (v′(start, end)) > lowest then
6: end′ = end
7: while end < |v′| do
8: end = min{end + L, |v′|}
9: if PT (v′(start, end)) < τ then

10: break
11: else
12: if PT (v′(start, end)) ≤ lowest then
13: end = end + 1
14: go to line 33
15: s = max{end − L, end′}; e = end
16: while e ̸= s do
17: mid = ⌈(s + e)/2⌉
18: if PT (v′(start,mid)) ≥ τ then
19: if PT (v′(start,mid)) ≤ lowest then
20: end = mid + 1
21: go to line 33
22: else
23: s = mid
24: else
25: e = mid − 1
26: if start > 1 ∧ PT (v′(start − 1, s)) ≥ τ then
27: end = s + 1
28: go to line 33
29: else
30: S = v′(start, s); Add S to TopSol
31: start = start + 1; end = s + 1
32: else
33: start = start + 1; end = max{end, start + L − 1}
34: until end > |v′|
35: return TopSol

6.2 Top-k PUA and PUC

The Top-k PUA algorithm below computes a set of top-k
partially unexplained activities in a video. Note that:

• at each time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PP (S) | S ∈ TopSol} if |TopSol| = k

• On line 43, “Add S to TopSol” works as follows:
– If |TopSol| < k, then S is added to TopSol;
– otherwise, a sequence in TopSol having mini-

mum PP is replaced by S.
To find an unexplained activity, Algorithm Top-k PUA

starts with a sequence of length at least L and adds
frames to its right until its probability of being partially
unexplained is above the threshold. As in the case of
Top-k TUA, this is done by adding L frames at a time
(lines 5–8) and then performing a binary search (lines 9–
27). When performing the binary search, if at some point
the algorithm realizes that the partially unexplained activity
will not have a probability greater than lowest, then the
sequence is disregarded and the binary search is aborted
(lines 17–19 and lines 24–25). Otherwise, the sequence is
shortened on the left making it minimal (lines 28–38) by
performing a binary search instead of proceeding one frame
at a time. Once again, if the algorithm realizes that the
partially unexplained activity will not have a probability
greater than lowest, then the sequence is disregarded and
the shortening process is aborted (lines 34–36). This allows
the algorithm to avoid computing the exact starting frame

of the PUA, thus saving time. Note that PP is computed
by applying Theorem 4.

Algorithm 2 Top-k PUA
Input: UAP instance I = ⟨v, ℓ, τ, L⟩, k ≥ 1
Output: Top-k partially unexplained activities
1: TopSol = ∅; start = 1; end = L
2: while end ≤ |v| do
3: if PP (v(start, end)) < τ then
4: end′ = end
5: while end < |v| do
6: end = min{end + L, |v|}
7: if PP (v(start, end)) ≥ τ then
8: break
9: if PP (v(start, end)) ≥ τ then

10: if PP (v(start, end)) > lowest then
11: s = max{end′ + 1, end − L + 1}; e = end
12: while e ̸= s do
13: mid = ⌊(s + e)/2⌋
14: if PP (v(start,mid)) < τ then
15: s = mid + 1
16: else
17: if PP (v(start,mid)) ≤ lowest then
18: start = start + 1; end = mid + 1
19: go to line 2
20: else
21: e = mid
22: end = e
23: else
24: start = start + 1; end = end + 1
25: go to line 2
26: else
27: return TopSol
28: s′ = start; e′ = end − L + 1
29: while e′ ̸= s′ do
30: mid = ⌈(s′ + e′)/2⌉
31: if PP (v(mid, end)) < τ then
32: e′ = mid − 1
33: else
34: if PP (v(mid, end)) ≤ lowest then
35: start = mid + 1; end = end + 1
36: go to line 2
37: else
38: s′ = mid
39: if PP (v(s′, end − 1)) ≥ τ ∧ |v(s′, end − 1)| ≥ L then
40: start = s′ + 1; end = end + 1
41: go to line 2
42: else
43: S = v(s′, end); Add S to TopSol
44: start = s′ + 1; end = end + 1
45: return TopSol

Theorem 7: Algorithm Top-k PUA returns a set of top-k
partially unexplained activities of the input instance.

Algorithm Top-k PUC modifies Top-k PUA as follows
to compute the top-k partially unexplained classes:

• At every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PP (C) | C ∈ TopSol} if |TopSol| = k

• “Add S to TopSol” (line 43) works as follows:
– If there exists C ∈ TopSol s.t. PP (C) = PP (S),

then S is added to C;
– else if |TopSol| < k, then the class {S} is added

to TopSol;
– otherwise the class C in TopSol having minimum

PP (C) is replaced with {S}.
• On line 10, PP (v(start, end)) > lowest is replaced

with PP (v(start, end)) ≥ lowest;
• On line 17, PP (v(start,mid)) ≤ lowest is replaced

with PP (v(start,mid)) < lowest;
• On line 34, PP (v(mid, end)) ≤ lowest is replaced

with PP (v(mid, end)) < lowest;
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The algorithm obtained by applying the modifications
above is named Top-k PUC.

Theorem 8: Algorithm Top-k PUC returns the top-k
partially unexplained classes of the input instance.

7 EXPERIMENTAL EVALUATION

Our prototype implementation of the proposed framework
consists of (i) an image processing library, which performs
low-level processing of video frames, including object
tracking and classification; (ii) a video labeler, which maps
frames to action symbols based on the output of the image
processing stage (i.e. gives a labeling of the video), (iii) an
activity recognition algorithm based on [1] which identifies
all possible occurrences of known activities (specified by
a set A) in the input video, (iv) a UAP engine, which
implements Algorithms Top-k TUA, Top-k PUA, Top-k
TUC and Top-k PUC in 10,000 lines of Java code.

We experimentally evaluated our framework in terms
of both running time and accuracy on two datasets: (i)
a video we shot by monitoring a university parking lot,
and (ii) a benchmark dataset about video surveillance in an
airport [23].

7.1 Parking lot surveillance video
The set A defined in this case includes activities such as
parking a car, people passing, and other “known” activities
we expect to occur in a parking lot.

We compared Algorithms Top-k TUA and Top-k PUA
against “naı̈ve” algorithms which are the same as Top-k
TUA and Top-k PUA but do not exploit the optimizations
provided by the theorems in Section 5.

Figures 5 and 6 show that Top-k TUA and Top-k PUA
significantly outperform the naı̈ve algorithms which are not
able to scale beyond videos of length 15 and 10 minutes
for totally and partially unexplained activities, respectively
(with longer videos, the naı̈ve algorithms did not terminate
in 3 hours). Figures 7a and 8a zoom in on the running times
for Algorithms Top-k TUA and Top-k PUA, respectively.
The runtimes in Figure 5 when k = 5 and k = All

are almost the same (the two curves are indistinguishable)
because, up to 15 minutes, there were at most 5 totally
unexplained activities in the video. A similar argument
applies to Figure 6.

We also evaluated how the different parameters that
define an UAP instance affect the running time by varying
the values of each parameter while keeping the others fixed
to a default value.
Runtime of Top-k TUA. Table 1 reports the values we
considered for each parameter along with the corresponding
default value.

Parameter Values Default value
k 1, 2, 5, All All
τ 0.4, 0.6, 0.8 0.6
L 160, 200, 240, 280 200
# worlds 7 E+04, 4 E+05, 2 E+07 2 E+07

TABLE 1: Parameter values used in the experiments for
Algorithm Top-k TUA (parking lot dataset).

For example, Table 1 says that we measured the run-
ning times to find the top-1, top-2, top-5, and all totally
unexplained activities (as the video length increases) while
keeping τ = 0.6, L = 200, #worlds = 2E + 07.
Varying k. Figure 7a shows that lower values of k give
lower running times. As discussed in the preceding section,
Algorithm Top-k TUA can can infer that some sequences
are not going to be top-k TUAs and quickly prune: this
is effective with lower values of k because the probability
threshold to enter the current Top-k TUAs (i.e., lowest
in Algorithm Top-k TUA) is higher, thus it gets more
restrictive to be added to the current Top-k TUAs and the
pruning applied by Algorithm Top-k TUA becomes more
effective.
Varying τ . Figure 7b shows that the runtime decreases as
the probability threshold grows. Intuitively, this is because
higher probability thresholds are a stricter requirement for
a sequence to be totally unexplained, so Algorithm Top-k
TUA can prune more.
Varying L. Figure 7c shows that higher values of L yield
lower running times, though there is not a big difference
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Fig. 7: Running time of Algorithm Top-k TUA on the parking lot dataset.

between L = 200 and L = 240.
Varying Number of Possible Worlds. Finally, Figure 7d
shows that more possible worlds leads to higher running
times. However, note that big differences in the number of
possible worlds yield small differences in running times,
hence Algorithm Top-k TUA is able to scale well (this is
due to the application of Theorem 2 to compute PT (S)).
Runtime of Top-k PUA. When analyzing Top-k PUA, we
used the same parameter values in Table 1 except for k
whose values were 1, 5, 10, All with default value All.
Varying k. The runtimes for k = 1, 5, 10 differ slightly
from each other and are much lower than when all PUAs
had to be found (Figure 8a).
Varying τ . Figure 8b shows that the runtimes do not change
much for different values of τ .
Varying L. Figure 8c shows that higher values of L lead
to lower runtimes.
Varying Number of Possible Worlds. Figure 8d shows that
higher numbers of possible worlds lead to higher runtimes.
As with TUAs, the runtime of Algorithm Top-k PUA
increases reasonably despite the steep growth of possible
worlds. Moreover, runtimes of Top-k PUA are higher than
for Top-k TUA because computing PP (S) requires solving
a non-linear program whereas PT (S) requires solving

linear programs.
Precision/Recall. In order to assess accuracy, we compared
the output of Algorithms Top-k TUA and Top-k PUA
against ground truth provided by 8 human annotators who
were taught the meaning of graphical representations of
activities in A (e.g. Figure 1). They were asked to identify
the totally and partially unexplained sequences in the video
w.r.t. A. We ran Top-k TUA and Top-k PUA with values of
the probability threshold τ ranging from 0.4 to 0.8, looking
for all totally and partially unexplained activities in the
video (L was set to 200). We use {Sa

i }i∈[1,m] to denote
the set of unexplained sequences returned by our algorithms
and {Sh

j }j∈[1,n] to denote the set of sequences flagged as
unexplained by human annotators. Precision and recall were
computed as:

P =
|{Sa

i |∃Sh
j s.t. Sa

i ≈ Sh
j }|

m

R =
|{Sh

j |∃Sa
i s.t. Sa

i ≈ Sh
j }|

n

where Sa
i ≈p Sh

j means that Sa
i and Sh

j overlap by a
percentage no smaller than 75%.

Figure 9 shows the precision/recall graph.
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Fig. 8: Running time of Algorithm Top-k PUA on the parking lot dataset.
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Fig. 9: Precision and Recall for Algorithms Top-k TUA and
Top-k PUA (parking lot dataset).

Precision and recall when τ = 0.4, 0.6, 0.8 are shown in
Tables 2 and 3, and show that the framework achieved a
good accuracy.

τ Precision Recall
0.4 62.5 89.17
0.6 66.67 82.5
0.8 72.22 71.67

TABLE 2: Precision and recall of Algorithm Top-k TUA
on the parking lot dataset.

τ Precision Recall
0.4 59.65 77.38
0.6 64.91 74.6
0.8 70.18 71.83

TABLE 3: Precision and recall of Algorithm Top-k PUA
on the parking lot dataset.

7.2 Airport surveillance video

We also tested our algorithms with an airport video surveil-
lance dataset [23].
Runtime of Top-k TUA. This data set is far more complex
(in terms of number of possible worlds) than the parking
lot data set - the “naı̈ve” algorithms did not terminate in a
reasonable amount of time, even with a video of 5 minutes.
We therefore do not show the running times of the naı̈ve
algorithms. As in the case of the parking lot data set, we
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Fig. 10: Running time of Algorithm Top-k TUA on the airport dataset.

varied the k, τ , L, # worlds parameters, as shown in
Table 4.

Parameter Values Default value
k 1, 2, 5, All All
τ 0.4, 0.6, 0.8 0.6
L 480, 600, 720, 840 600
# worlds 2 E+09, 6 E+20, 1 E+28 1 E+28

TABLE 4: Parameter values used in the experiments for
Algorithm Top-k TUA (airport dataset).

Varying k. Figure 10a shows that Top-k TUA’s runtime
varies little with k when the video is up to 15 minutes long.
After that, the runtime for k = 1, 2, 5 are comparable, but
the runtime for k = All starts to diverge from them.
Varying τ . Figure 10b shows that the runtime when
τ = 0.4 is much higher than when τ = 0.6 and τ = 0.8
(the latter two cases do not show substantial differences in
running time).
Varying L. Figure 10c shows that higher values of L yield
lower runtimes. Though the difference is small for videos
under 15 minutes, it becomes marked for 20 minute long
videos.
Varying Number of Possible Worlds. Figure 10d shows
that runtimes for different numbers of possible worlds are

initially close (up to 15 minutes); then, the runtime for 1
E+28 possible worlds gets higher. There is only a moderate
increase in runtime corresponding to a huge increase of the
number of possible worlds — hence, Top-k TUA is able to
scale well when the video gets substantially more complex.
Runtime of Top-k PUA. We conducted experiments with
k = 1, 5, 10, All - other parameters were varied according
to Table 4.
Varying k. Figure 11a shows that the runtime decreases as
k decreases.
Varying τ . Figure 11b shows that the runtimes for τ = 0.4
and τ = 0.6 are similar and higher than the runtime for
τ = 0.8.
Varying L. Figure 11c shows that lower values of L give
higher running times. The runtimes are similar for L = 480
and L = 600 (the number of PUAs found in the video
are similar in both cases). Execution times are lower for
L = 720 and much lower for L = 800 (in this case, the
number of PUAs found in the video is approximately half
the number of PUAs found with L = 480 and L = 600).
Varying Number of Possible Worlds. Figure 11d shows
that though the runtime grows with the number of possible
worlds, Top-k PUA responds well to the steep growth of
the number of possible worlds.
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Fig. 11: Running time of Algorithm Top-k PUA on the airport dataset.

Precision/Recall. We evaluated the accuracy of Top-k TUA
(resp. Top-k PUA) in the same way as for the parking lot
data set. The precision/recall graph is reported in Figure 12
and shows that we achieved high accuracy (see also Ta-
bles 5 and 6).
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Fig. 12: Precision and Recall for Algorithms Top-k TUA
and Top-k PUA (airport dataset).

τ Precision Recall
0.4 56.48 80.35
0.6 78.79 76.25
0.8 81.82 73.99

TABLE 5: Precision and recall of Algorithm Top-k TUA
on the airport dataset.

τ Precision Recall
0.4 72.62 77.12
0.6 75 73.59
0.8 76.19 71.5

TABLE 6: Precision and recall of Algorithm Top-k PUA
on the airport dataset.

7.3 Experimental Conclusions

Our experiments show that:
(i) Runtime increases with video length (because there are
more possible worlds, causing LC(v, ℓ) and NLC(v, ℓ) to
have more variables and constraints). Despite the enormous
blow-up in the number of possible worlds, our algorithms
perform very well.
(ii) Runtime increases with the number of totally or partially
unexplained activities present in the video. This is because
determining the exact endpoints of each TUA (resp. PUA)
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is costly. Specifically, determining the exact end frame
of a TUA requires computing PT many times: when a
TUA is found, Top-k TUA (and also Top-k TUC) need
to go through the while loop of lines 7–14, the binary
search in the while loop of lines 16–25, and the if block
of lines 26–31. All these code blocks require PT to be
computed. Likewise, determining the exact start and end
frames of a PUA requires PP to be computed many times as
Algorithm Top-k PUA (as well as Algorithm Top-k PUC)
goes through different loops and binary searches (one to
determine the start frame, another to determine the end
frame) requiring multiple computations of PP .
(iii) In general, the number of TUAs and PUAs in the video
decreases as τ and L increase, because higher values of τ
and L are stricter conditions for a sequence to be totally or
partially unexplained.
(iv) Runtime decreases as k decreases because our algo-
rithms use k intelligently to infer that certain sequences
are not going to be in the result (aborting the loops and
binary searches mentioned above).
(v) Precision increases whereas recall decreases as τ
increases. The experimental results have shown that a good
compromise can be achieved by setting τ at least 0.6 and
that our framework had a good accuracy with both the
datasets we considered.

8 CONCLUSIONS

Suppose to have a video v and a set A of “known” activities
(normal or suspicious). In this paper, we address the prob-
lem of finding subsequences of v that are not “sufficiently
well” explained by the activities in A. We formally define
what it means for a video sequence to be unexplained by
providing the notions of totally and partially unexplained
activities. We propose a possible worlds framework and
identify interesting properties that can be leveraged to make
the search for unexplained activities highly efficient via
intelligent pruning. We leverage these properties to develop
the Top-k TUA, Top-k PUA, Top-k TUC, Top-k PUC
algorithms to find totally and partially unexplained activ-
ities with highest probabilities. We conducted a detailed
experimental evaluation over two datasets showing that our
approach works well in practice in terms of both running
time and accuracy.
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